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Numerical simulations of non-linear wave radiation in inviscid
�uid with a free surface
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SUMMARY

The paper deals with the numerical simulation of non-linear wave radiation by vertical free-surface
piercing structures moving horizontally in water of �nite constant depth. A time-stepping approach
combined with the �nite element method is used to simulate the potential �ows due to high-frequency
oscillations of the structure. The evolution equations for the wave elevation and velocity potential at the
free surface, exact up to second order, are derived using Stokes perturbation expansion. The boundary
value problems up to second order at each time-step are solved using the Eulerian description and a
�xed mesh of �nite elements. The results of simulations are presented for vertical cylinders of circular
cross section, and for sloshing waves in annular tanks. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Steep waves and earthquakes may excite high-frequency motions of �oating or gravity based
o�shore structures which in turn may radiate waves and thus experience additional hydrody-
namic loading. If the structure motion is strong, the resulting hydrodynamic loading, which
is complementary to the di�raction loading due to the seaway, is signi�cant (see Rainey [1]
and Chaplin et al. [2]).

While the non-linear di�raction loads have been analysed quite extensively in recent years
with the use of both analytical methods (e.g. Malenica and Molin [3], Huang and Eatock
Taylor [4], Newman [5], Malenica et al. [6]) and numerical approaches (e.g. Isaacson and
Cheung [7], Kim et al. [8], Ferrant et al. [9], Ferrant and Pelletier [10]), the non-linear,
high-frequency, radiation loads have received less attention [11]. However, the calculation of
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the third-order, third-harmonic radiation loads on a vertical cylinder (see Markiewicz et al.
[12]) shows that they may become signi�cant under certain circumstances.

The work deals with the numerical simulation of non-linear wave radiation by vertical
free-surface piercing structures moving horizontally in water of �nite constant depth. A time-
stepping approach combined with the �nite element method is used for a model exact to
second order to simulate the potential �ow due to high-frequency oscillations of the structure.

The fully non-linear potential �ow simulations of water waves usually utilize the mixed
Eulerian–Lagrangian approach. The methods are based on a time-stepping procedure, in which
the free-surface boundary conditions and the body boundary conditions are applied at the
instantaneous free and body surfaces. The �eld problem is usually generated and solved by
a direct BEM at each time step as both the free surface and the body move to the new
positions. This simulation technique is termed as Non-linear Numerical Wave Tank and the
review of recent developments can be found in Kim et al. [13] and Liu et al. [11].

Despite the considerable progress in this area, the implementation of the method in three
dimensions is still not completely satisfactory, particularly for wave–structure interaction prob-
lems. In order to achieve a satisfactory convergence, one has to use higher-order boundary
elements and regridding procedures what makes the method a very time consuming one.
There are also di�culties with the behaviour of the intersection lines of a body and the free
surface. The representative papers on fully non-linear 3D calculations include for instance
Celebi et al. [14], Ferrant [15] and Liu et al. [11].

An interesting modi�cation of the above mentioned method is a so-called semi-Lagrangian
approach with markers on the free surface which follow not water particles but certain pre-
scribed motion. This approach has been applied to the analysis of non-linear di�raction loads
by Ferrant et al. [9], and to numerical simulations of sloshing waves by Wu et al. [16]. In
the latter work, the �nite elements have been used instead of boundary elements.

In the present work, three-dimensional potential �ow simulations of high-frequency radiated
waves have been carried out with the use of a mathematical model which is correct to
second-order in the wave steepness. Similar approach has already been utilized by Isaacson
and Cheung [7], Ng and Isaacson [17] and Ferrant and Pelletier [10] for di�raction and 2D
radiation problems. However, to the authors’ knowledge it has not been used for 3D radiation
problems so far.

The numerical study of non-linear wave radiation by free-surface piercing structures
undertaken in the present work has also been motivated by the phenomenon of the so-called
parametrically forced wave instability. Waves generated by oscillating structures in �uid are
known to become unstable when the oscillation amplitude exceeds a certain threshold value.
The usual forced waves evolve into cross waves due to non-linear interaction at both the free
surface and the moving structure surface (see Figure 1). This kind of instability has often been
observed in laboratory water tanks (see e.g. References [18–22]) and has been analysed by
many researchers (for review of earlier works see Reference [23]). It has been found that the
phenomenon arises due to resonant interactions of higher-order wave components which cause
the growth of a strong subharmonic cross wave. The simpli�ed theoretical models used in the
analysis so far are unable to describe satisfactorily all the observed aspects of the phenomenon.
They indicate, however, that the numerical simulation must be of such an accuracy that the
subtle higher-order e�ects will not be contaminated by numerical errors. It is believed that the
numerical method for potential �ow presented in the work is able to meet this requirement.
Thus, it can successfully be applied in the future to the analysis of the phenomenon.
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NON-LINEAR WAVE RADIATION 1281

Figure 1. Evolution of waves radiated by an oscillating cylinder into a cross wave.

2. MATHEMATICAL FORMULATION

Consider the radiation of non-linear gravity waves in an inviscid �uid of constant depth h
due to the forced oscillatory motion of a free-surface piercing body mounted on the bottom.
The origin of a �xed co-ordinate system is located at the undisturbed free surface and the
vertical z-axis is positive upward (see Figure 2).

Under the assumption that the �ow is irrotational and the �uid incompressible, there exists
a velocity potential �(x; y; z; t) which satis�es the Laplace equation in the �uid domain �
with the following boundary conditions:

• on the free-surface z = �(x; y; t):

�; t + ∇� ·∇� = �; z (1)

gz + �; t +
1
2
|∇�|2 = −Pa=� (2)

• on the instantaneous body surface z =f(x; y; t):

f; t + ∇f ·∇� = �; z (3)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1279–1300
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Figure 2. De�nition sketch.

• on the impermeable bottom z =−h:

�; z = 0 (4)

In the above formulae, subscripts after a comma denote the di�erentiation with respect to the
proper co-ordinate, � is water density, g is the gravitational acceleration and Pa is the pressure
on the free surface. Moreover f(x; y; t) can be considered as a sum f(x; y; t) =f0(x; y) +
�(x; y; t), where f0(x; y) describes the position of the body at rest.

The derivation of the second-order approximation to the above boundary value problem
will be based on the approach used by Dommermuth and Yue [24]. According to that the
free-surface potential

�(x; y; t) = �(x; y; �(x; y; t); t) (5)

is introduced, where the free surface is assumed to be continuous and single-valued. In terms
of �, the boundary conditions on the free surface are

�; t =−∇� ·∇� + (1 + |∇�|2)�; z (x; y; �; t) (6)

�; t =−g�− 1
2
|∇�|2 +

1
2

(1 + |∇�|2)�2
; z(x; y; �; t) − Pa=� (7)

The kinematic boundary condition on the instantaneous body surface

�; t + ∇(f0 + �) ·∇�(x; y; f) = �; z (x; y; f) (8)

with prescribed body motion (or deformation) �= �(x; y; t), the no-�ow condition

� = 0 (9)
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on the open far-�eld boundary S∞, and the initial conditions �(x; y; 0), �(x; y; 0) on the free-
surface complete the boundary value problem considered.

Equations (6) and (7) are the evolution equations for two canonical variables � and �,
which can be solved numerically by a time-stepping procedure. They can be used to analyse
the evolution of forced waves due to the body oscillation started from rest, and the interaction
of forced waves with small disturbance waves being the result of an initial elevation. These
equations have a slightly di�erent form than those usually used in the numerical analysis (e.g.
References [8, 10]). Please note, that there are no partial derivatives with respect to time on
the right-hand side. Usually one has to deal with such terms like �(1)@2�(1)=@z @t in which the
vertical component of the particle acceleration must be approximated by a �nite di�erence.
The quality of this approximation a�ects the stability of numerical integration. For the present
form of the evolution equations this problem does not exist.

3. NUMERICAL METHOD FOR POTENTIAL FLOW

In order to solve the non-linear wave radiation problem in potential-�ow formulation, the
numerical integration of the evolution equations (6) and (7) for the prescribed motion of the
structure is performed. At each time step, the knowledge of vertical components of the particle
velocities on the free-surface �; z (x; y; �; t) together with gradients ∇� and ∇� is required.

For an oscillating structure, it will be assumed that its relevant characteristic length d is
comparable to the wavelength � of the radiated wave, and thus that kd=O(1); k being
the wave number k = 2�=�. This is referred to as the di�raction regime. Assuming that the
amplitude u0 of the forced oscillation of the structure is small in comparison to d, i.e. u0=d�1,
one can de�ne �= ku0�1 as a small parameter.

In order to solve the �eld problem at a time step ti, it is assumed that �; � and � are
O(�) quantities. Then, the velocity potential is expressed as a perturbation series up to second
order§

�(x; y; z; ti) =
2∑

m=1
�(m)(x; y; z; ti) (10)

Here and hereinafter, ( )(m) denotes a quantity of O(�m). Similar expansion is performed
for �(x; y; ti), �(x; y; ti) and the prescribed motion (or deformation) of an oscillating body
�(x; y; ti):

{�; �; �}(x; y; z; ti) =
2∑

m=1
{�(m); �(m); �(m)}(x; y; z; ti) (11)

Expanding each �(m) evaluated on z = � in a Taylor series about a still water level z = 0
one obtains

�(x; y; ti) = �(x; y; �; ti) =
2∑

m=1

2−m∑
k=0

�k

k!
@k

@zk
�(m)(x; y; 0; ti) (12)

§ The perturbation expansion could be taken up to an arbitrary order M . However, the di�culties in numerical
implementation increase signi�cantly for m¿2.
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Similarly, one can apply to �(m) evaluated on z =f(x; y; t) a Taylor series expansion about
z =f0(x; y)

�(x; y; f; ti) =
2∑

m=1

2−m∑
k=0

�k

k!
@k

@zk
�(m)(x; y; f0; ti) (13)

Substituting Equation (13) into boundary condition (8), one obtains

�; t(x; y; ti) + ∇(f0 + �) ·∇
{

2∑
m=1

2−m∑
k=0

�k

k!
@k

@zk
�(m)(x; y; f0; ti)

}

=
2∑

m=1

2−m∑
k=0

�k

k!
@k+1

@zk+1 �(m)(x; y; f0; ti) (14)

At a given instant, �; �; � and �; t may be considered as known, being prescribed at the
collocation points (xj; yj; zj) on the undisturbed free surface and on the wetted surface of the
body at rest z =f0(x; y). Hence, Equations (12) and (14) may be considered as the boundary
conditions on a �xed �uid domain for the unknown velocity potentials �(m).

Bearing in mind relations (11), one can collect terms at each order in Equations (12) and
(14) to obtain eventually a sequence of Dirichlet boundary conditions on the undisturbed free
surface z = 0

�(m)(x; y; 0; ti) =




�(1)(x; y; ti) for m= 1

�(2)(x; y; ti) − �(1) @
@z

�(1)(x; y; 0; ti) for m= 2
(15)

Similar procedure leads to a sequence of Neumann boundary conditions on the body surface
at rest z =f0(x; y)

@
@z

�(m) −∇f0 ·∇�(m) =




@�(1)

@t
for m= 1

@�(2)

@t
+ ∇f0 ·∇

{
�(1) @�(1)

@z

}

+∇�(1) ·∇�(1) − �(1) @
2�(1)

@z2 for m= 2

(16)

Equations (15) and (16), together with Laplace equation and bottom boundary condition (4)
de�ne a sequence of linear boundary value problems for �(m) in the domain � = {z :−h6z60
∩ z¿f0(x; y)}. These problems ought to be solved successively at increasing order. After this
has been done, the vertical velocities of free-surface particles can be computed from

�; z (x; y; �; ti) =
2∑

m=1

2−m∑
k=0

(�(1) + �(2))k

k!
@k+1

@zk+1 �(m)(x; y; 0; ti) (17)

retaining terms up to second order.
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Finally, one has to integrate numerically the following set of evolution equations:

�(m)
; t = F (m)

�(m)
; t = −g�(m) + G(m) for m= 1; 2 (18)

with

F (1) = �(1)
; z (x; y; 0; t)

F (2) = �(2)
; z (x; y; 0; t) + �(1)�(1)

; zz (x; y; 0; t) −∇�(1) ·∇�(1)

G(1) = 0

G(2) = − 1
2
|∇�(1)|2 +

1
2

[�(1)
; z (x; y; 0; t)]2 (19)

where the external forcing on the free surface has been neglected for the sake of simplicity
(i.e. Pa ≡ 0).

An important advantage of this procedure is that the evolution of linear and nonlinear com-
ponents of the solution can be followed separately with independent scaling of the evolution
equations. This increases the accuracy of the higher-order components even for a moderate
step size used in a time-marching scheme.

3.1. Finite element formulation—axisymmetric structures

The sequence of linear boundary value problems for �(m) can be solved by using any numerical
method like BEM or FEM. In this work, the �nite element method is applied. The formulation
of the method is given for axisymmetric structures.

In the case of an axisymmetric structure described by z =f0(r), where r is an usual radial
co-ordinate de�ned in the plane (x; y), all the components �(m) of the velocity potential can
be expanded in a Fourier series in the circumferential direction

�(m) =
N∑

n=0
(�(m)

cn (r; z; t) cos n� + �(m)
sn (r; z; t) sin n�) (20)

Similar decomposition can be applied to the components of the free-surface elevation �(m),
free-surface potential �(m) and the prescribed body motion (or deformation) �(m):




�(m)

�(m)

�(m)


=

N∑
n=0







�(m)
cn (r; t)

�(m)
cn (r; t)

�(m)
cn (r; t)


cos n� +




�(m)
sn (r; t)

�(m)
sn (r; t)

�(m)
sn (r; t)


sin n�




(21)

Note, that even for an axisymmetric structure its prescribed deformation or motion can gen-
erally be not axisymmetric. The initial conditions applied on the free surface can also be
arbitrary. As a result, at a given order of approximation m, one obtains 2(N + 1) independent
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sets of evolution equations for the amplitudes of spatial harmonic components of �(m) and
�(m):

�(m)
in; t =F (m)

in

�(m)
in; t =−g�(m)

in + G(m)
in

(22)

for m= 1; 2, i = s; c, n= 0; 1; : : : ; N , with

F (1)
in = �(1)

in; z (r; 0; t)

F (2)
in = �(2)

in; z (r; 0; t) + 	in(r; t) − 
in(r; t)

G(1)
in = 0

G(2)
in = − in(r; t) + �in(r; t) (23)

where the functions 	in, 
in,  in and �in are given in the appendix.
The Fourier decomposition allows for a FEM formulation in two dimensions (r; z) for each

spatial harmonic component �(m)
in independently. The boundary value problems formulated

above can be derived by using variational approach from the functional

J (�(m)
in ) =

1
2

∫
�
(∇�(m)

in )2 d� −
∫
SB

V (m)
in (s)�(m)

in dS (24)

where V (m)
in denotes the normal component of the velocity of the points on the wetted structure

surface due to the displacement components �(m)
in . The second integral is evaluated over the

mean wetted structure surface. The free surface does not contribute to the functional since
the Dirichlet (essential) boundary condition (15) is imposed on this boundary.

Calculating the variation of the functional and selecting a set of interpolation functions, one
obtains a linear system of equations for the unknown values of �(m)

in at nodal points

K(m)
n ·�(m)

in =R(m)
in (25)

Details of this rather standard procedure are omitted here. The matrices K(m)
n and R(m)

in are
given in Appendix. We note only that sti�ness matrices for sin n� and cos n� components
are identical and have been determined for the mesh of quadrilateral isoparametric 8-node
�nite elements. The mesh does not move during the time-marching procedure. Thus the global
sti�ness matrix for each spatial component has to be assembled and inverted only once during
the computations. This reduces signi�cantly the CPU-time and makes the method extremely
e�cient.

4. EXAMPLES OF COMPUTATIONS

4.1. Oscillating vertical circular cylinder

In this section, the developed solution method is applied to the radiation of water waves by
a circular cylinder (radius R) mounted on the bottom in water of constant depth h. The �uid
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Figure 3. Cylinder con�guration and the de�nition of the instantaneous cylinder surface.

domain is bounded by an outer circular cylinder (radius R∞) on which the far-�eld boundary
condition (9) is imposed (see Figure 3). The problem seems to be simple enough, however,
to the authors’ knowledge, its fully non-linear solution is not known so far.

The forced oscillation of the cylinder axis in the x-direction is described by the following
displacement function:

u(t) =−u0 cos �t for t¿0 (26)

Assuming that u0¡R, one can express the instantaneous cylinder surface (see Figure 3) in
cylindrical co-ordinates as

r =f(�; t) = u(t) cos � +
√

R2 − u2(t) sin2 � (27)

The position of the body at rest is simply r =R and �(�; t) =f(�; t) − R. Finally, the motion
is assumed to start from rest with no waves on the free surface, so that the initial conditions
on z = 0 are

�(x; y; 0)≡ 0; �(x; y; 0)≡ 0 (28)

According to the concept of the perturbation method, a power series expansion is applied to
the function �(�; t) describing the motion of the cylinder

�(�; t) = �(1) + �(2) + · · · = u(t) cos �− u2(t)
4R

(1 − cos 2�) + O(u4(t)) (29)

where u(t) has been assumed to be a �rst-order quantity.
In order to apply the method to this example, one has to express the boundary conditions

(16) on the wetted cylinder surface r =R in cylindrical co-ordinates:

@�(m)

@r
=




@�(1)

@t
for m= 1

@�(2)

@t
+

1
R2

@�(1)

@�
@�(1)

@�
− �(1) @

2�(1)

@r2 for m= 2
(30)
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Before starting the computations, the evolution equations are scaled by the following
rede�nition of the variables:

�(m) �−→ k2

�m�
�(m); �(m) �−→ k2

�m�
�(m); �(m) �−→ k

�m
�(m)

�(m) �−→ k
�m

�(m); (r; z) �−→ k (r; z); t �−→�t

where k denotes the wave number of a radiated linear wave component in the far �eld.
Moreover, a suitable modulation function

F(t) =




1
2

[
1 − cos

�t
TM

]
for t¡TM

1 for t¿TM
(31)

with a modulation period TM is applied in the initial phase so that the cylinder motion in
dimensionless form is described by

u(t) =−F(t) cos t (32)

The application of the function F(t) allows for a smooth start of the cylinder oscillation and
stabilizes numerical integration.

The numerical integration of the evolution equations is performed with the use of the
implicit Crank–Nicolson method. The method, which is not only unconditionally stable, but
it is second-order accurate in time as well as in space, has proved extremely e�cient in all
the computational examples discussed in the paper.

Some results for a cylinder (radius R= 0:09 m, water depth h= 0:42 m) oscillating at the
frequency 1:7Hz with the amplitude u0 = 0:018m are shown in Figures 4–10. A corresponding
wave number and wave length in far �eld are k = 11:1 1=m, �= 0:565 m. The amplitude of
the cylinder motion has been selected to produce a rather steep wave with �= 0:2. The radius
of the outer cylinder was chosen as R∞ = 5:74 m so that the water area in the radial direction
is equal to 10�. A vertical section of the �uid domain was discretized by 30080 eight-node
rectangular elements.

Figure 4 shows the time history of the second-order axisymmetric component of the free-
surface elevation at two nodes. A solid line represents the node located on the cylinder at
r =R, a dashed line represents the node at r =R+ �=4. One can observe a stable steady state
reached after approximately �ve periods of the cylinder oscillations. Note that the oscillation
frequency of this component is twice as the cylinder frequency. The other components reveal
the same stable behaviour.

As already mentioned, the present method allows for an independent study of the evolution
of all wave components present in the solution. In our example, due to a speci�c excitation
(see Equation (29)), only one linear (cos �) and two non-linear (axisymmetric and cos 2�)
components are present in the solution which is exact up to second order. The instantaneous
free-surface elevation (dimensionless) for each of these components after 10 periods of cylin-
der oscillations is shown in Figures 5, 6 and 7.

The total non-linear free-surface elevation is obtained by assembling the properly scaled
(�= 0:2) linear and non-linear components (see Figure 8). The non-linear e�ects concentrate
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Figure 5. Instantaneous free surface elevation after 10 periods, linear component.

in the vicinity of the oscillating cylinder and decay quite fast, as shown in Figures 9 and 10.
The numerical approach con�rms the result well known from the analysis in frequency domain
(see Markiewicz et al. [12]) that the non-linear radiated wave �eld must consist of so-called
locked and free components, both are clearly visible in Figure 10. The former with the length
approximately equal to �=2, with � being the wavelength of the linear component in far
�eld, emerges due to nonlinear interaction of the �rst order components on the free surface.
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Figure 6. cos(2�)-component of the free surface after 10 periods.
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Figure 9. Wave contour at �= 0◦ after 10 periods for the linear component.
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Figure 10. Wave contour at �= 0◦ after 10 periods for the non-linear components.

The latter has its length approximately equal to �=4 and is directly forced by a wavemaker
(cylinder). The locked component propagates with the same phase speed as the linear one
c= �=k, whereas the phase speed of the free component is equal to c= �=2k. Moreover,
Figure 10 shows that the locked component associated with the wave number 2k decays
slower than the free component associated with the wave number 4k. The analysis in the
frequency domain leads to a similar conclusion.

It is apparent that the parameter � a�ects only the �nal result i.e. the assembling of the
solution. Thus, having performed the simulation for one magnitude of the cylinder oscillation
one is able to construct the solution for any magnitude. Certainly, the weakness of this
approach is that for large values of the wave steepness � the solution obtained has nothing to
do with a real wave �eld, particularly, one is unable to model breaking of waves. Nevertheless,
for waves of moderate steepness the method yields correct results, which can be con�rmed
by comparison with experiments. Here, we only refer to the �rst picture shown in Figure 1
where a rather steep cylindrical wave is shown. One can observe the non-linear components
‘riding’ on a linear one.

4.2. Sloshing waves in an annular tank

In this example sloshing of �uid in a tank built of two coaxial vertical cylinders is investigated.
The parameters of the tank are: Rin = 0:09m, Rout = 1:09m, water depth h= 0:75m. The waves
are induced by a prescribed free-surface potential at t = 0. More speci�cally, the dimensionless
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initial conditions are:

�(r; �; 0)≡ 0; �(r; �; 0) =�(1)
c1 cos � + �(1)

s1 sin � (33)

with

�(1)
c1 =�(1)

s1 = 1:5 ·[J1(k2r) + 
2Y1(k2r)]; 
2 =− J ′
1 (k2Rin)

Y ′
1 (k2Rin)

(34)

The Bessel functions J1 and Y1 are computed for the value k2 = 4:7605, which is the second
eigenvalue of a linear sloshing problem in such an annular tank i.e. k2 is the second root of
the characteristic equation

J ′
1 (kRin)Y ′

1 (kRout) − J ′
1 (kRout)Y ′

1 (kRin) = 0 (35)

Thus, the initial conditions (33) describe the second eigenmode of a linear sloshing problem.
The parameters correspond to the initial wave steepness �= 0:2.

The �uid domain was discretized in one vertical section by 6336 equally spaced eight-node
elements, 96 horizontally and 66 vertically. The aim of the calculation was to observe the
development of non-linear wave components which should inevitably emerge during sloshing
since the initial wave satis�es only a linearized free-surface condition. One would also expect
that the linear wave component, as a second eigenmode, will be preserved during simulations

Some results of the simulations are shown in Figures 11–16. The evolution of the free
surface in the initial phase is shown within a half of a sloshing period in Figure 11. After
�ve further sloshing periods, the non-linear components on the free surface become more
pronounced (see Figure 12). The same e�ects can also be observed on the snapshots of
the free surface at some instants (see Figures 13 and 14). One can observe that the non-
linear components appear �rst at the inner cylinder (due to large gradients in circumferential
direction), then propagate towards the outer cylinder.

The initial conditions of the sloshing have been chosen in such a form (33), (34) which
allows for an easy check of the accuracy of computations.

Consider the evolution equations for the second-order components �(2)
c2 , �(2)

c2 . Using Equa-
tions (22), (23), the relations given in the appendix, and noting that only the �rst-harmonic
components (sin �; cos �) are present in the linear wave, one obtains

�(2)
c2; t = �(2)

c2; z +
1
2

{
�(1)
c1 �(1)

c1; zz − �(1)
s1 �(1)

s1; zz + �(1)
s1; r�

(1)
s1; r − �(1)

c1; r�
(1)
c1; r

+
1
r2 (�(1)

c1 �(1)
c1 − �(1)

s1 �(1)
s1 )

}

�(2)
c2; t = −g�(2)

c2 +
1
4

{
�(1)2

s1; r − �(1)2
c1; r + �(1)2

c1; z − �(1)2
s1; z +

1
r2 (�(1)2

c1 − �(1)2
s1 )

}
(36)

By virtue of (33) and (34) �(1)
c1 (r; t) is equal to �(1)

s1 (r; t) and consequently �(1)
c1 (r; t)≡ �(1)

s1 (r; t).
Since the nonlinear components are assumed to be zero at t = 0, it follows from (15) and
(36) that �(2)

c2 (t) and �(2)
c2 (t) are identically equal to zero on the whole free surface in this

case. Thus, the time history of �(2)
c2 can be treated as a measure of computational error. The

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1279–1300



1294 M. MARKIEWICZ, K. BEN-NASR AND O. MAHRENHOLTZ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

1.5

r (m)

t = 4.8356

t = 1.6956
di

m
en

si
on

le
ss

 fr
ee

-s
ur

fa
ce

 e
le

va
tio

n

Figure 11. Wave elevations at �= 45◦ in the initial phase of sloshing between t = 1:6956 and 4:8356,
equidistant distribution within a half of a sloshing period.
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Figure 12. Wave elevations at �= 45◦ after �ve sloshing periods between t = 33:3468 and 36:4868,
equidistant distribution within a half of a sloshing period.
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Figure 13. Sloshing waves at t = 1:70 (a), t = 2:89 (b) t = 7:98 (c) and t = 9:55 (d).
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Figure 14. Sloshing waves at t = 16:40 (a), t = 19:2 (b) t = 34:5 (c) and t = 35:0 (d).
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elevation of �(2)
c2 after twelve sloshing periods shown in Figure 15 indicates a clear numerical

zero. On the other hand, Figure 16 shows that the linear wave component remains preserved
during sloshing. Both �gures con�rm a very high accuracy of the method.

5. CONCLUSIONS

A new numerical method has been developed for the simulation of non-linear waves radiated
by oscillating structures or produced by an initial disturbance of the free surface. The method,
which is correct to second order in wave steepness, has proved extremely e�cient when
applied both to the radiation and sloshing of waves. The evolution equations for each order
of approximation have been scaled independently. It enables one to study the linear and
non-linear e�ects separately.

The �nite element approach used in the numerical procedure proved to be e�ective. The
sequence of boundary value problems for all wave components is solved on a �xed domain,
thus the matrix of the equation system has to be assembled and decomposed only once
during simulations. Corner points can be treated in a standard way. Generally, the method
applies to generation of waves of a moderate steepness, for which the free surface is a
single-valued function. At the present stage of development, the axisymmetric wave generators
subjected to (not necessarily) periodic oscillation or wave propagation in cylindrical tanks can
be considered.

In the numerical example referring to the radiation problem, the far-�eld boundary condition
(Equation (9)) has been taken in an extremely simple form stating that the disturbance will
not reach the outer boundary during simulations. This implies a large outer radius of the
disretized domain or a limited simulation time since Equation (9) will result in spurious wave
re�ections when radiated waves reach the outer boundary. Certainly, one could apply instead
more sophisticated radiation conditions or use damping zones at the open far-�eld boundaries
as in [10]. Such extensions can easily be included in the formulation of the method. However,
the method is such computationally inexpensive that we decided to use the simplest form of
the far-�eld boundary condition in our numerical tests.

The method presented in the work is still not capable to deal with the parametric wave
instability mentioned in the Introduction. In order to account for such phenomena, it has to
be generalized to include third-order e�ects. A theoretical part of this task has already been
completed. Currently, the extensive work is going on the numerical implementation of the
procedure.

The method is based on perturbation expansion and thus it cannot be extended to account
for fully non-linear wave simulations including wave breaking. Any extension beyond the third
order seems to be infeasible. However, its e�ciency and accuracy in modelling of second-
and hopefully third-order e�ects makes it attractive to an o�shore engineer.

APPENDIX A

Functions 	in, 
in,  in and �in:
In order to determine the functions 	in, 
in,  in and �in which appear in the functions F (2) and
G(2), Equation (23), the following trigonometric identities are needed:
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∞∑
n=0

an cos n�
∞∑
m=0

bm cosm� =
1
2

∞∑
n=0

{
�n

∞∑
m=0

(ambm+n + am+nbm) +
n∑

m=0
an−mbm

}
cos n�

∞∑
n=0

an sin n�
∞∑
m=0

bm sin m� =
1
2

∞∑
n=0

{
�n

∞∑
m=0

(ambm+n + am+nbm) −
n∑

m=0
an−mbm

}
cos n�

∞∑
n=0

an sin n�
∞∑
m=0

bm cosm� =
1
2

∞∑
n=1

{ ∞∑
m=0

(ambm+n − am+nbm) +
n∑

m=0
an−mbm

}
sin n�

∞∑
n=0

nan cos n�
∞∑
m=0

mbm cosm� =
1
2

∞∑
n=0

{
�n

∞∑
m=0

m(m + n)(ambm+n + am+nbm)

+
n∑

m=0
m(n−m)an−mbm

}
cos n�

∞∑
n=0

nan sin n�
∞∑
m=0

mbm sin m� =
1
2

∞∑
n=0

{
�n

∞∑
m=0

m(m + n)(ambm+n + am+nbm)

−
n∑

m=0
m(n−m)an−mbm

}
cos n�

∞∑
n=0

nan sin n�
∞∑
m=0

mbm cosm� =
1
2

∞∑
n=1

{ ∞∑
m=0

m(m + n)(ambm+n − am+nbm)

+
n∑

m=0
m(n−m)an−mbm

}
sin n�

with �0 = 1
2 and �n = 1 for n¿1.

Applying these identities to the products of �rst-order quantities in Equations (19) one
obtains

	cn(r; t) =
1
2
�n

∞∑
m=0

(�(1)
cm�(1)

c(m+n); zz + �(1)
c(m+n)�

(1)
cm; zz + �(1)

sm �(1)
s(m+n); zz + �(1)

s(m+n)�
(1)
sm; zz)

+
1
2

n∑
m=0

(�(1)
c(n−m)�

(1)
cm; zz − �(1)

s(n−m)�
(1)
sm; zz) for z = 0

	sn(r; t) =
1
2

∞∑
m=0

(�(1)
s(m+n)�

(1)
cm; zz + �(1)

cm�(1)
s(m+n); zz − �(1)

sm �(1)
c(m+n); zz − �(1)

c(m+n)�
(1)
sm; zz)

+
1
2

n∑
m=0

(�(1)
sm �(1)

c(n−m); zz + �(1)
c(n−m)�

(1)
sm; zz) for z = 0
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cn(r; t) =
1
2
�n

∞∑
m=0

{
�(1)
cm; r�

(1)
c(m+n); r + �(1)

c(m+n); r�
(1)
cm; r + �(1)

sm; r�
(1)
s(m+n); r + �(1)

s(m+n); r�
(1)
sm; r

+
m(m + n)

r2 (�(1)
cm�

(1)
c(m+n) + �(1)

c(m+n)�
(1)
cm + �(1)

sm �(1)
s(m+n) + �(1)

s(m+n)�
(1)
sm )

}

+
1
2

n∑
m=0

{
�(1)
c(n−m); r�

(1)
cm; r − �(1)

s(n−m); r�
(1)
sm; r +

m(n−m)
r2 (�(1)

s(n−m)�
(1)
sm − �(1)

c(n−m)�
(1)
cm )

}


sn(r; t) =
1
2

∞∑
m=0

{
�(1)
cm; r�

(1)
s(m+n); r + �(1)

s(m+n); r�
(1)
cm; r − �(1)

sm; r�
(1)
c(m+n); r − �(1)

c(m+n); r�
(1)
sm; r

− m(m + n)
r2 (�(1)

cm�
(1)
s(m+n) + �(1)

s(m+n)�
(1)
cm − �(1)

sm �(1)
c(m+n) − �(1)

c(m+n)�
(1)
sm )

}

+
1
2

n∑
m=0

{
�(1)
c(n−m); r�

(1)
sm; r + �(1)

sm; r�
(1)
c(n−m); r −

m(n−m)
r2 (�(1)

s(n−m)�
(1)
cm + �(1)

cm�
(1)
s(n−m))

}

 cn(r; t) =
1
2
�n

∞∑
m=0

{
�(1)

cm; r�
(1)
c(m+n); r + �(1)

sm; r�
(1)
s(m+n); r +

m(m + n)
r2 (�(1)

cm �(1)
c(m+n) + �(1)

sm �(1)
s(m+n))

}

+
1
4

n∑
m=0

{
�(1)

c(n−m); r�
(1)
cm; r − �(1)

s(n−m); r�
(1)
sm; r +

m(n−m)
r2 (�(1)

s(n−m)�
(1)
sm − �(1)

c(n−m)�
(1)
cm )

}

 sn(r; t) =
1
2

∞∑
m=0

{
�(1)

cm; r�
(1)
s(m+n); r − �(1)

sm; r�
(1)
c(m+n); r −

m(m + n)
r2 (�(1)

cm �(1)
s(m+n) − �(1)

sm �(1)
c(m+n))

}

+
1
2

n∑
m=0

(
�(1)

c(n−m); r�
(1)
sm; r −

m(n−m)
r2 �(1)

cm �(1)
s(n−m)

)

�cn(r; t) =
1
2
�n

∞∑
m=0

(�(1)
cm; z�

(1)
c(m+n); z + �(1)

sm; z�
(1)
s(m+n); z) +

1
4

n∑
m=0

(�(1)
c(n−m); z�

(1)
cm; z − �(1)

s(n−m); z�
(1)
sm; z)

�sn(r; t) =
1
2

∞∑
m=0

(�(1)
cm; z�

(1)
s(m+n); z − �(1)

sm; z�
(1)
c(m+n); z) +

1
2

n∑
m=0

�(1)
c(n−m); z�

(1)
sm; z for z = 0 (A1)

Matrices K(m)
n and R(m)

in of the �nite element equations:
The global sti�ness matrix K(m)

n and right-hand side vector R(m)
in are assembled from the

element matrices

{K(m)
n }ejk =

∫
�e

∇Nj∇Nk d�e + n2
∫

�e

1
r2 NjNk d�e

{R(m)
in }ej =

∫
Se
B

V (m)
in Nj dSe

with the quadratic interpolation functions Nj of the serendipity family.
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